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Finite-dimensional control

Let n,m ∈ N∗ and T > 0. Consider the following finite
dimensional system:{

x ′(t) = Ax(t) + Bu(t), t ∈ (0,T ),
x(0) = x0.

(1)

In (1), A is a real n × n matrix, B is a real n ×m matrix and x0 a
vector in Rn. The function x : [0,T ] −→ Rn represents the state
and u : [0,T ] −→ Rm the control. Both are vector functions of n
and m components respectively depending exclusively on time t.
Obviously, in practice m ≤ n. The most desirable goal is, of
course, controlling the system by means of a minimum number m
of controls.
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Given an initial datum x0 ∈ Rn and a vector function
u ∈ L2(0,T ;Rm), system (1) has a unique solution
x ∈ H1(0,T ;Rn) characterized by the variation of constants
formula:

x(t) = eAtx0 +

∫ t

0
eA(t−s)Bu(s)ds, ∀t ∈ [0,T ]. (2)

System (1) is exactly controllable in time T > 0 if given any
initial and final one x0, x1 ∈ Rn there exists u ∈ L2(0,T ,Rm) such
that the solution of (1) satisfies x(T ) = x1.
According to this definition the aim of the control process consists
in driving the solution x of (1) from the initial state x0 to the final
one x1 in time T by acting on the system through the control u.
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Example 1. Consider the case

A =

(
1 0

0 1

)
, B =

(
1

0

)
. (3)

Then the system
x ′ = Ax + Bu

can be written as {
x ′1 = x1 + u
x ′2 = x2,

or equivalently, {
x ′1 = x1 + u
x2 = x02 e

t ,

where x0 = (x01 , x
0
2 ) are the initial data.

This system is not controllable since the control u does not act on
the second component x2 of the state which is completely
determined by the initial data x02 .

E. Zuazua Finite-dimensional linear control



Finite-dimensional linear control Problem formulation Observability The rank condition Bang-bang Switching Switching + bang-bang Stabilization Conclusions References

Example 2. By the contrary, the equation of the harmonic
oscillator is controllable

x ′′ + x = u. (4)

The matrices A and B are now respectively

A =

(
0 1

−1 0

)
, B =

(
0

1

)
.

One can easily check the controllability in this case by simply
building a smooth curve x = x(t) taking the initial values at t = 0
and the final ones at t = T , and then, computing a posteriori the
control u(t) = x ′′(t) + x(t).

In fact a scalar equation equation of arbitrary order

x (n) + an−1x
(n−1) + ...a1x

′ + a0x = u(t).
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Define the set of reachable states

R(T , x0) = {x(T ) ∈ Rn : x solution of (1) with u ∈ (L2(0,T ))m}.
(5)

The exact controllability property is equivalent to the fact that
R(T , x0) = Rn for any x0 ∈ Rn.
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Let A∗ be the adjoint matrix of A, i.e. the matrix with the
property that 〈Ax , y〉 = 〈x ,A∗y〉 for all x , y ∈ Rn. Consider the
following homogeneous adjoint system of (1):{

−ϕ′ = A∗ϕ, t ∈ (0,T )
ϕ(T ) = ϕT .

(6)

This is an equivalent condition for exact controllability .

Lemma

An initial datum x0 ∈ Rn of (1) is driven to zero in time T by
using a control u ∈ L2(0,T ) if and only if∫ T

0
〈u,B∗ϕ〉dt + 〈x0, ϕ(0)〉 = 0, ∀ϕ. (7)
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Proof:

Let ϕT be arbitrary in Rn and ϕ the corresponding solution of (6).
By multiplying (1) by ϕ and (6) by x we deduce that

〈x ′, ϕ〉 = 〈Ax , ϕ〉+ 〈Bu, ϕ〉; −〈x , ϕ′〉 = 〈A∗ϕ, x〉.

Hence,
d

dt
〈x , ϕ〉 = 〈Bu, ϕ〉

which, after integration in time, gives that

〈x(T ), ϕT 〉 − 〈x0, ϕ(0)〉 =

∫ T

0
〈Bu, ϕ〉dt =

∫ T

0
〈u,B∗ϕ〉dt. (8)

We obtain that x(T ) = 0 if and only if (7) is verified for any
ϕT ∈ Rn.
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Identity (7) is in fact an optimality condition for the critical points
of the quadratic functional J : Rn → R,

J(ϕT ) =
1

2

∫ T

0
| B∗ϕ |2 dt + 〈x0, ϕ(0)〉

where ϕ is the solution of the adjoint system (6) with initial data
ϕT at time t = T .
More precisely:

Lemma

Suppose that J has a minimizer ϕ̂T ∈ Rn and let ϕ̂ be the solution
of the adjoint system (6) with initial data ϕ̂T . Then

u = B∗ϕ̂ (9)

is a control of system (1) with initial data x0.
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Proof:

If ϕ̂T is a point where J achieves its minimum value, then

lim
h→0

J (ϕ̂T + hϕT )− J (ϕ̂T )

h
= 0, ∀ϕT ∈ Rn.

This is equivalent to∫ T

0
〈B∗ϕ̂,B∗ϕ〉dt + 〈x0, ϕ(0)〉 = 0, ∀ϕT ∈ Rn,

which, in view of Lemma 1, implies that u = B∗ϕ̂ is a control for
(1).
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But minimizing the functional J requires of its coercivity.
System (6) is said to be observable in time T > 0 if there exists
c > 0 such that ∫ T

0
| B∗ϕ |2 dt ≥ c | ϕ(0) |2, (10)

for all ϕT ∈ Rn, ϕ being the corresponding solution of (6).
In the sequel (10) will be called the observation or observability
inequality. It guarantees that the solution of the adjoint problem
at t = 0 is uniquely determined by the observed quantity B∗ϕ(t)
for 0 < t < T .
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The following remark is very important in the context of finite
dimensional control.
Inequality (10) is equivalent to the following unique continuation
principle:

B∗ϕ(t) = 0, ∀t ∈ [0,T ]⇒ ϕT = 0. (11)

This is an uniqueness or unique continuation property.
Unfortunately the equivalence is not true for infinite-dimensional
systems (PDE, distributed parameter systems), as we use that
∂B(0, 1) is compact to prove that (11) implies (10).
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UNIQUE CONTINUATION → OBSERVABILITY INEQUALITY
→ CONTROLLABILITY

WITH A CONSTRUCTIVE PROCEDURE TO BUILD
CONTROLS BY MINIMIZING A COERCIVE FUNCTIONAL.
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What about the observability property? Are there algebraic
conditions on the state matrix A and the control one B for it to be
true?
The following classical result is due to R. E. Kalman and gives a
complete answer to the problem of exact controllability of finite
dimensional linear systems.

Theorem

System (1) is exactly controllable in some time T if and only if

rank [B, AB, · · · ,An−1B] = n. (12)

Consequently, if system (1) is controllable in some time T > 0 it is
controllable in any time.
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Proof of Theorem 3: “⇐”.

Suppose now that rank([B, AB, · · · ,An−1B]) = n. It is sufficient
to show that system (6) is observable.
Assume B∗ϕ = 0 and ϕ(t) = eA

∗(T−t)ϕT , it follows that
B∗eA

∗(T−t)ϕT ≡ 0 for all 0 ≤ t ≤ T . By computing the
derivatives of this function in t = T we obtain that

B∗[A∗]kϕT = 0 ∀k ≥ 0.

But since rank(
[
B, AB, · · · ,An−1B

]
) = n we deduce that

Ker(
[
B∗, B∗A∗, · · · ,B∗(A∗)n−1

]
) = {0}

and therefore ϕT = 0. Hence, (11) is verified.
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Proof of Theorem 3: “⇒”

Suppose that rank([B, AB, · · · ,An−1B]) < n. Then the kernel of the adjoint is
non trivial. Accordingly, there is a non-trivial ϕT such that

B∗[A∗]kϕT = 0 ∀k ≥ 0.

Let ϕ be the corresponding solution of the adjoint system.
From Cayley-Hamilton Theorem we deduce that there exist constants
c1, · · · , cn such that, An = c1A

n−1 + · · ·+ cnI . Expanding the exponential in
power series it is the easy to see that for all t ∈ (0,T ):

B∗ϕ(t) = B∗ exp(A∗(T − t))ϕT ≡ 0.

Multiplying the state equation by ϕ it is easy to see that

< x(t), ϕ(t) >= x(t)∗ϕ(t) = (x0)∗eA
∗tϕ(t) +

∫ t

0

u(s)∗B∗eA
∗(t−s)ϕ(t)ds

= (x0)∗eA
∗tϕ(t) +

∫ t

0

u(s)∗B∗eA
∗(T−s)ϕT = (x0)∗eA

∗tϕ(t)

Consequently, the product < x(t), ϕ(t) > is invariant of the control, which
excludes the controllability property to hold. The proof of Theorem 3 is now
complete.
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The set of controllable pairs (A,B) is open and dense.

• Most systems are controllable;

• The controllability property is robust, i. e. it is invariant
under small perturbations of A and/or B.

When controllability holds,

‖ u ‖L2(0,T )≤ C |eAT x0 − x1| (13)

for any initial data x0 and final objective x1.
Linear scalar equations of any order provide examples of systems
that are controllable with only one control: k

x (k) + a1x
(k−1) + . . .+ ak−1x = u.

Exercise: Check that the Kalman condition is fulfilled in this case.
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Bang-bang

Let us consider the particular case

B ∈Mn×1, (14)

i. e. m = 1, in which only one control u : [0,T ]→ R is available
and B is a column vector.
To build bang-bang controls it is convenient to consider the
quadratic functional:

Jbb(ϕ0) =
1

2

[∫ T

0
| B∗ϕ | dt

]2
+ 〈x0, ϕ(0)〉 (15)

where ϕ is the solution of the adjoint system (6) with initial data
ϕT .
The same argument as above shows that Jbb is also continuous
and coercive. It follows that Jbb attains a minimum in some point
ϕ̂T ∈ Rn.
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The optimality condition (the Euler-Lagrange equations) its
minimizers satisfy:∫ T

0
| B∗ϕ̂ | dt

∫ T

0
sgn (B∗ϕ̂)B∗ψ(t)dt + 〈x0, ϕ(0)〉 = 0

for all ϕT ∈ R, where ϕ is the solution of the adjoint system (6)
with initial data ϕT . The control we are looking for is

u =

∫ T

0
| B∗ϕ̂ | dt sgn (B∗ϕ̂)

where ϕ̂ is the solution of (6) with initial data ϕ̂T .
The control is of bang-bang form, and takes only two values
±
∫ T
0 | B

∗ϕ̂ | dt switching finitely many times when the function
B∗ϕ̂ changes sign. It has minimal L∞(0,T ) norm.
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The control u2 = B∗ϕ̂ obtained by minimizing the functional J has
minimal L2(0,T ) norm among all possible controls. Analogously,

the control u∞ =
∫ T
0 | B

∗ϕ̂ | dt sgn (B∗ϕ̂) obtained by minimizing
the functional Jbb has minimal L∞(0,T ) norm among all possible
controls.
Proof: Let u be an arbitrary control for (1). Then (7) is verified
both by u and u2 for any ϕT . By taking ϕT = ϕ̂T (the minimizer
of J) in (7) we obtain that∫ T

0
< u,B∗ϕ̂ > dt = − < x0, ϕ̂(0) >,

||u2||2L2(0,T ) =

∫ T

0
< u2,B

∗ϕ̂ > dt = − < x0, ϕ̂(0) > .
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Hence,

||u2||2L2(0,T ) =

∫ T

0
< u,B∗ϕ̂ > dt ≤ ||u||L2(0,T )||B∗ϕ̂||L2(0,T )

= ||u||L2(0,T )||u2||L2(0,T )

and the first part of the proof is complete.
For the second part a similar argument may be used. Indeed, let
again u be an arbitrary control for (1). Then (7) is verified by u
and u∞ for any ϕT . By taking ϕT = ϕ̂T (the minimizer of Jbb) in
(7) we obtain that∫ T

0
B∗ϕ̂udt = − < x0, ϕ̂(0) >,

||u∞||2L∞(0,T ) =

(∫ T

0
|B∗ϕ̂|dt

)2

=

∫ T

0
B∗ϕ̂u∞dt = − < x0, ϕ̂(0) > .
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Hence,

||u∞||2L∞(0,T ) =

∫ T

0
B∗ϕ̂ udt

≤ ||u||L∞(0,T )

∫ T

0
|B∗ϕ̂|dt = ||u||L∞(0,T )||u∞||L∞(0,T ),

and the proof finishes.
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Switching control

Consider the finite dimensional linear control system{
x ′(t) = Ax(t) + u1(t)b1 + u2(t)b2
x(0) = x0.

(16)

x(t) =
(
x1(t), . . . , xN(t)

)
∈ RN is the state of the system, A is a

N × N−matrix, u1 = u1(t) and u2 = u2(t) are two scalar controls
an b1, b2 are given control vectors in RN .
More general and complex systems may also involve switching in
the state equation itself:

x ′(t) = A(t)x(t) + u1(t)b1 + u2(t)b2, A(t) ∈ {A1, ...,AM}.
E. Zuazua Finite-dimensional linear control
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Controllability

Given a control time T > 0 and a final target x1 ∈ RN we look for
control pairs

(
u1, u2

)
such that the solution of (16) satisfies

x(T ) = x1. (17)

In the absence of constraints, controllability holds if and only if the
Kalman rank condition is satisfied

rank
[
B, AB, . . . ,AN−1B

]
= N (18)

with B =
(
b1, b2

)
.

We look for switching controls:

u1(t)u2(t) = 0, a.e. t ∈ (0, T ). (19)

Under the rank condition above, these switching controls always
exist.
To develop systematic strategies allowing to build switching
controllers.
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The controllers of a system endowed with different actuators are
said to be of switching form when only one of them is active in
each instant of time.
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The classical theory guarantees that the standard controls (u1, u2)
may be built by minimizing the functional

J
(
ϕ0
)

=
1

2

∫ T

0

[
|b1 · ϕ(t)|2 + |b2 · ϕ(t)|2

]
dt − x1 · ϕ0 + x0 · ϕ(0),

among the solutions of the adjoint system{
−ϕ′(t) = A∗ϕ(t), t ∈ (0, T )
ϕ(T ) = ϕ0.

(20)

The rank condition for the pair (A,B) is equivalent to the
following unique continuation property for the adjoint system
which suffices to show the coercivity of the functional:

b1 · ϕ(t) = b2 · ϕ(t) = 0, ∀t ∈ [0,T ]→ ϕ ≡ 0.
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Preassigned switching

Given a partition τ = {t0 = 0 < t1 < t2 < ... < t2N = T} of the time interval
(0,T ), consider the functional

Jτ
(
ϕ0
)

=
1

2

N−1∑
j=0

∫ t2j+1

t2j

|b1 · ϕ(t)|2dt +
1

2

N−1∑
j=0

∫ t2j+2

t2j+1

|b2 · ϕ(t)|2dt

−x1 · ϕ0 + x0 · ϕ(0).

Under the same rank condition this functional is coercive too. In fact, in view
of the time-analiticity of solutions, the above unique continuation property
implies the apparently stronger one:

b1 · ϕ(t) = 0 t ∈ (t2j , t2j+1); b2 · ϕ(t) = 0 t ∈ (t2j+1, t2j+2)→ ϕ ≡ 0

and this one suffices to show the coercivity of Jτ . Thus, Jτ has an unique
minimizer ϕ̌ and this yields the controls

u1(t) = b1 · ϕ̌(t), t ∈ (t2j , t2j+1); u2(t) = b2 · ϕ̌(t), t ∈ (t2j+1, t2j+2)

which are obviously of switching form.
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A new functional for automatic switching
Consider now, without an a priori partition of [0,T ]:

Js(ϕ0) =
1

2

∫ T

0
max

(∣∣b1 · ϕ(t)
∣∣2, ∣∣b2 · ϕ(t)

∣∣2)dt−x1·ϕ0+x0·ϕ(0).

(21)

Theorem

Assume that the pairs (A, b2 − b1) and (A, b2 + b1) satisfy the
rank condition. Then, for all T > 0, Js achieves its minimum.
Furthermore, the switching controllers{

u1(t) = ϕ̃(t) · b1 when
∣∣ϕ̃(t) · b1

∣∣ > ∣∣ϕ̃(t) · b2
∣∣

u2(t) = ϕ̃(t) · b2 when
∣∣ϕ̃(t) · b2

∣∣ > ∣∣ϕ̃(t) · b1
∣∣ (22)

where ϕ̃ is the solution of (20) with datum ϕ̃0 at time t = T ,
control the system.
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1 The rank condition on the pairs
(
A, b2 ± b1

)
is a necessary

and sufficient condition for the controllability of the systems

x ′ + Ax =
(
b2 ± b1

)
u(t). (23)

This implies that the system with controllers b1 and b2 is
controllable too but the reverse is not true (take b2 = ±b1).

2 The rank conditions on the pairs
(
A, b2 ± b1

)
are needed to

ensure that the set{
t ∈ (0, T ) :

∣∣ϕ(t) · b1
∣∣ =

∣∣ϕ(t) · b2
∣∣} (24)

is of null measure, which ensures that the controls in (22) are
genuinely of switching form.
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Sketch of the proof

There are two key points:
a) Showing that the functional Js is coercive, i. e.,

lim
‖ϕ0‖→∞

Js(ϕ0)

‖ ϕ0 ‖
=∞,

which guarantees the existence of minimizers.
Coercivity is immediate since

|ϕ(t) · b1|2 + |ϕ(t) · b2|2 ≤ 2 max
[
|ϕ(t) · b1|2, |ϕ(t) · b2|2

]
and, consequently, the functional Js is bounded below by a
functional equivalent to the classical one J.
b) Showing that the controls obtained by minimization are of
switching form.
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This is equivalent to proving that the set

I = {t ∈ (0, T ) : |ϕ̃ · b1| = |ϕ̃ · b2|}

is of null measure.
Assume for instance that the set
I+ = {t ∈ (0, T ) : ϕ̃(t) · (b1 − b2) = 0} is of positive measure, ϕ̃
being the minimizer of Js . The time analyticity of ϕ̃ · (b1 − b2)
implies that I+ = (0, T ). Accordingly ϕ̃ · (b1 − b2) ≡ 0 and,
consequently, taking into account that the pair (A, b1 − b2)
satisfies the Kalman rank condition, this implies that ϕ̃ ≡ 0. This
would imply that

J(ϕ0) ≥ 0, ∀ϕ0 ∈ RN

which may only happen in the trivial situation in which
x1 = eAT x0, a trivial situation that we may exclude.
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The Euler-Lagrange equations associated to the minimization of Js
take the form∫
S1

ϕ̃(t)·b1 ψ(t)·b1dt+

∫
S2

ϕ̃(t)·b2 ψ(t)·b2dt−x1·ψ0+x0·ψ(0) = 0,

for all ψ0 ∈ RN , where{
S1 = {t ∈ (0, T ) : |ϕ̃(t) · b1| > |ϕ̃(t) · b2|},
S2 = {t ∈ (0, T ) : |ϕ̃(t) · b1| < |ϕ̃(t) · b2|}.

(25)

In view of this we conclude that

u1(t) = ϕ̃(t) · b1 1S1(t), u2(t) = ϕ̃(t) · b2 1S2(t), (26)

where 1S1 and 1S2 stand for the characteristic functions of the sets
S1 and S2, are such that the switching condition holds and the
corresponding solution satisfies the final control requirement.
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Slight variants of these arguments lead to switching controls of
different nature, in particular to switching bang-bang controls.
For instance, when minimizing the functional

Jsb(ϕ0) =
1

2

[∫ T

0
max

(
|ϕ(t) · b1|, |ϕ(t) · b2|

)
dt

]2
−x1·ϕ0+x0·ϕ(0),

the controls take the form

u1(t) = λ sgn
(
ϕ̃(t) · b1

)
1S1(t); u2(t) = λ sgn

(
ϕ̃(t) · b2

)
1S2(t).

where

λ =

∫ T

0
max

(
|ϕ̃(t) · b1|, |ϕ̃(t) · b2|

)
dt.
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Optimality

The switching controls we obtain this way are of minimal

L2
(

0, T ; R2
)

-norm, the space R2 being endowed with the `1

norm, i. e. with respect to the norm

||(u1, u2)||L2(0,T ; `1) =
[ ∫ T

0
(|ũ1|+ |ũ2|)2dt

]1/2
.

Switching bang-bang controls are of minimal L∞
(

0, T ; R2
)

-norm
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Stabilisation

The controls we have obtained so far are the so called open loop
controls. In practice, it is interesting to get closed loop or feedback
controls, so that its value is realted in real time with the state
itself.
In this section we assume that A is a skew-adjoint matrix, i. e.
A∗ = −A. In this case, < Ax , x >= 0. Consider the system{

x ′ = Ax + Bu
x(0) = x0.

(27)

When u ≡ 0, the energy of the solution of (27) is conserved.
Indeed, by multiplying (27) by x , if u ≡ 0, one obtains

d

dt
|x(t)|2 = 0. (28)
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Hence,
|x(t)| = |x0|, ∀t ≥ 0. (29)

The problem of stabilization can be formulated in the following
way. Suppose that the pair (A,B) is controllable. We then look for
a matrix L such that the solution of system (27) with the feedback
control law

u(t) = Lx(t) (30)

has a uniform exponential decay, i.e. there exist c > 0 and
ω > 0 such that

|x(t)| ≤ ce−ωt |x0| (31)

for any solution.
Note that, according to the law (30), the control u is obtained in
real time from the state x .
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In other words, we are looking for matrices L such that the solution
of the system

x ′ = (A + BL)x = Dx (32)

has an uniform exponential decay rate.
Remark that we cannot expect more than (31). Indeed, for
instance, the solutions of (32) may not satisfy x(T ) = 0 in finite
time T . Indeed, if it were the case, from the uniqueness of
solutions of (32) with final state 0 in t = T , it would follow that
x0 ≡ 0.

Theorem

If A is skew-adjoint and the pair (A,B) is controllable then
L = −B∗ stabilizes the system, i.e. the solution of{

x ′ = Ax − BB∗x
x(0) = x0

(33)

has an uniform exponential decay (31).
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Proof

With L = −B∗ we obtain that

1

2

d

dt
|x(t)|2 = − < BB∗x(t), x(t) >= − | B∗x(t) |2≤ 0.

Hence, the norm of the solution decreases in time.
Moreover,

|x(T )|2 − |x(0)|2 = −2

∫ T

0
| B∗x |2 dt. (34)

To prove the uniform exponential decay it is sufficient to show that
there exist T > 0 and c > 0 such that

|x(0)|2 ≤ c

∫ T

0
| B∗x |2 dt (35)

for any solution x of (33). Indeed, from (34) and (35) we would
obtain that

|x(T )|2 − |x(0)|2 ≤ −2

c
|x(0)|2 (36)
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and consequently
|x(T )|2 ≤ γ|x(0)|2 (37)

with

γ = 1− 2

c
< 1. (38)

Hence,

|x(kT )|2 ≤ γk |x0|2 = e(lnγ)k |x0|2 ∀k ∈ N. (39)

Now, given any t > 0 we write it in the form t = kT + δ, with
δ ∈ [0,T ) and k ∈ N and we obtain that

|x(t)|2 ≤ |x(kT )|2 ≤ e−|ln(γ)|k |x0|2 =

= e−|ln(γ)|( t
T )e |ln(γ)| δ

T |x0|2 ≤ 1
γ e
− |ln(γ)|

T
t |x0|2.
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We have obtained the desired decay result (31) with

c =
1

γ
, ω =

| ln(γ) |
T

. (40)

To prove (35) we decompose the solution x of (33) as x = ϕ+ y
with ϕ and y solutions of the following systems:{

ϕ′ = Aϕ
ϕ(0) = x0,

(41)
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and {
y ′ = Ay − BB∗x

y(0) = 0.
(42)

Remark that, since A is skew-adjoint, (41) is exactly the adjoint
system (6) except for the fact that the initial data are taken at
t = 0.
As we have seen in the proof of Theorem 3, the pair (A,B) being
controllable, the following observability inequality holds for system
(41):

|x0|2 ≤ C

∫ T

0
| B∗ϕ |2 dt. (43)

Since ϕ = x − y we deduce that

|x0|2 ≤ 2C

[∫ T

0
| B∗x |2 dt +

∫ T

0
| B∗y |2 dt

]
.
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On the other hand, it is easy to show that the solution y of (42) satisfies:

1

2

d

dt
| y |2= −〈B∗x , B∗y〉 ≤ |B∗x | |B∗| |y | ≤ 1

2

(
|y |2 + |B∗|2|B∗x |2

)
.

From Gronwall’s inequality we deduce that

| y(t) |2≤ |B∗|2
∫ t

0

et−s | B∗x |2 ds ≤ |B∗|2eT
∫ T

0

| B∗x |2 dt (44)

and consequently∫ T

0

| B∗y |2 dt ≤ |B|2
∫ T

0

| y |2 dt ≤ T |B|4eT
∫ T

0

| B∗x |2 dt.

Finally, we obtain that

| x0 |2≤ 2C

∫ T

0

| B∗x |2 dt + C |B∗|4eTT
∫ T

0

| B∗x |2 dt ≤ C ′
∫ T

0

| B∗x |2 dt

and the proof of Theorem 5 is complete.
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Example

Consider the damped harmonic oscillator:

mx ′′ + Rx + kx ′ = 0, (45)

where m, k and R are positive constants.
Note that (45) may be written in the equivalent form

mx ′′ + Rx = −kx ′

which indicates that an applied force, proportional to the velocity
of the point-mass and of opposite sign, is acting on the oscillator.
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It is easy to see that the solutions of this equation have an
exponential decay property. Indeed, it is sufficient to remark that
the two characteristic roots have negative real part. Indeed,

mr2 + R + kr = 0⇔ r± =
−k ±

√
k2 − 4mR

2m

and therefore

Re r± =

{
− k

2m if k2 ≤ 4mR

− k
2m ±

√
k2

4m −
R
2m if k2 ≥ 4mR.

We observe here the classical overdamping phenomenon.
Contradicting a first intuition it is not true that the decay rate
increases when the value of the damping parameter k increases.

E. Zuazua Finite-dimensional linear control



Finite-dimensional linear control Problem formulation Observability The rank condition Bang-bang Switching Switching + bang-bang Stabilization Conclusions References

Arbitrary decay rate

If (A,B) is controllable, we have proved the uniform stability
property of the system (27), under the hypothesis that A is
skew-adjoint. However, this property holds even if A is an arbitrary
matrix. More precisely, we have:

Theorem

If (A,B) is controllable then it is also stabilizable. Moreover, it is
possible to prescribe any complex numbers λ1, λ2,...,λn as the
eigenvalues of the closed loop matrix A + BL by an appropriate
choice of the feedback matrix L so that the decay rate may be
made arbitrarily fast.

This result is not in contradiction with the behavior we observed
above on the harmonic oscillator (the overdamping phenomenon).
In order to obtain the arbitrarily fast decay one needs to use all
components of the state on the feedback law!
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Conclusions

We have shown that:

• Controllability and observabilitiy are equivalent notions
(Wiener’s cybernetics).

• Both hold for all T if and only if the Kalman rank condition is
fulfilled.

• The controls may be obtained as minimizers of suitable
quadratic functionals over the space of solutions of the adjoint
system.

• There are very many controls: smooth ones, in bang-bang
form,...

• When the system is endowed with various actuators one may
establish automatic strategies to switch from one to another.

• Controllable systems are stabillizable by means of closed loop
or feedback controls.
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